
www.manaraa.com

Private and Anonymous Data Storage and
Distribution in Cloud

Qi Duan, Yongge Wang, Fadi Mohsen, and Ehab Al-Shaer
Department of Software and Information Systems,

The University of North Carolina at Charlotte
Email: {qduan, yongge.wang, fmohsen, ealshaer}@uncc.edu

Abstract—Cloud storage systems have received extensive atten-
tion in recent years. Many individuals and business organizations
are beginning to move their data to cloud environments. It be-
comes increasingly important to investigate secure file storage in
cloud environments. In this paper, we present a secure distributed
file distribution system in which the customers can directly choose
appropriate design parameters and service providers. In our
scheme, we use novel coding techniques that almost achieve
the Shannon information bound with very efficient coding and
decoding process. Our evaluations show the correctness and
efficiency of the coding scheme. We show that the problem to
find the satisfying file distribution under certain cost and security
constraints is NP-hard, and present the Satisfiability Modulo
Theories (SMT) formalization to find the satisfying data share
distribution with cost and security constraints. The SMT formal-
ization is flexible to be applied to other threshold based cloud file
distribution system and can accommodate other constraints. We
also analyse the security of the scheme by defining the security
metric (compromising probability) for both the eavesdropping
and DoS attackers and show that one must carefully choose
design parameters to achieve the required security.

I. I NTRODUCTION

In recent years cloud storage systems are becoming increas-
ingly popular for individuals and organizations to store their
data. In cloud storage the data is stored in multiple virtualized
pools, which are generally maintained by third parties that
operate large data centers. Individuals or organizations that
require their data to be stored can buy or lease storage capacity
from hosting companies. The resources in cloud storage are
virtualized and the contents from a single customer may span
across multiple servers.

There have been extensive researches and systems on storing
data in different drives or locations to achieve high relia-
bility and security. For example, RAID [14] array has been
extensively used and is the de factor standard for reliable
computer system design. Though RAID array is normally used
within a single computer system, data could also be split
into fragments and stored in distributed locations (or nodes).
For example, in the seminal paper, Rabin [15] proposed the
Information Dispersal Algorithm (IDA) to coding information
into n pieces that will be stored amongn servers such that the
recovery of the information is possible when there are at most
t = n− k failed servers (inactive but not malicious Byzantine
style servers). It should be noted that Rabin’s IDA scheme is
essentially an application of Reed-Solomon error code [16]

in storage systems. In recent years, there have been many
researches in distributed storage systems based on advanced
coding techniques. For example, the work in [9] and [8] used
information flow graphs and random linear coding to achieve
information theoretic minimum functional repair bandwidth.

On the other hand, we have seen many researches on
designing efficient coding techniques for RAID array systems
and for distributed storage systems. Most of these researches
focus on designing codes based pure exclusive or (XOR)
operations. These codes include the EVENODD codes [5],
which can tolerate two disk faults and correcting one disk
errors, and Huang’s [10] extension of EVENODD code for
tolerating three disk faults, etc.

Most previous researches of coding schemes in cloud stor-
age focus on the coding scheme used by the service providers.
Service providers can provide data availability but not confi-
dentiality since the service providers cannot be trusted. Even
if the service providers can be trusted, the data confidentiality
can never be guaranteed in cloud storage. It will be more
secure if the customer can do the coding and choose the
appropriate service providers to distribute the file. We also
believe that, in the future, the number of cloud storage service
providers will continue to increase and it is possible for the
customer to outsource data storage to a significantly large
number of service providers.

In this paper we present a novel framework of secure cloud
data storage from the customer perspective. In our framework,
the customer encodes the data with an efficient coding method
and sends one or more shares of the encoded data to each of
the n service providers. The original data can be retrieved
from at leasek (k < n) shares. Less thank shares of data can
retrieve nothing of the original data.

Our main contributions of paper include:
1) We present two novel cloud file storage coding and

distribution schemes. The first scheme is IDA based,
and the second one is XOR based. In our schemes, the
encoding and decoding is directly done by the customer
and the privacy of the stored data is guaranteed by the
property of the threshold based encodings.

2) We show that the problem to find the satisfying cloud
file distribution scheme under certain cost and security
constraints is NP-hard, and present the Satisfiability
Modulo Theories (SMT) formalization to find the sat-

www.manaraa.com

2

isfying data share distribution with these constraints.
The formalization can be applied to different types of
threshold based cloud file distribution schemes and is
flexible to include other constraints.

3) We implement the scheme and evaluate the performance.
Our evaluation shows that it is feasible and efficient to do
the segmentation, encoding and decoding in customers’
machines.

4) We analyse the security of the scheme by defining the
security metric (compromising probability) for both the
eavesdropping and DoS attackers. We show that one
must carefully choose then and k values to achieve
the required security.

The rest of the paper is organized as follows. Section II
discusses the design and attack model used in our work.
Section III presents the coding schemes. Section IV presents
the hardness and SMT formalization of the constrained file
distribution problem. Section V presents the security analysis,
implementation and evaluation. Section VI presents the related
works. Section VII concludes the paper.

II. D ESIGN AND ATTACK MODEL

A. Design Model

In our cloud storage service model, the customer uses
her machine to communicate with the service provider. The
service provider most likely uses cloud infrastructure of other
company or utilizes her own. A customer may use many
service providers, and a service provider may be used by many
customers. The service to infrastructure relation is also amany
to many relation, similar to the customer-service relation. For
instance, Google drive is a service on Google cloud but Google
cloud is used by other service providers as well. The reasons
why we mention this are performance and security. A customer
who is interested in using more than one service provider
needs to know the underlining infrastructure or authority
domain. If two service providers are running on top of the
same infrastructure or authority domain then there is no point
of diversifying the service to these two providers. An attacker
needs just to hack one infrastructure or authority domain to
get into customers’ files stored in different service providers.
A good strategy then is for customers to diversify their service
providers in regard to their underline infrastructure or authority
domain to assure performance and security.

Fig. 1 and Fig. 2 show an example of the procedure to
distribute and retrieve files. In the distribution stage, wepar-
tition the file intoN segments, then we do XORing between
those segments according to our chosen distribution scheme
(or other operations, based on the coding scheme). Here ’P’
means its an original segment, whereas ’X’ means an XORed
segment (resulted from XORing two original segments). Then
we distribute them among the providers. In the retrieving
stage, we choose a number of providers, get all segments (’P’
and ’X’) and use a sequence of XOR operations between an
’X’ and a ’P’ to get another original segment. The process
continues until all original segments are retrieved.

Fig. 1. The procedure to distribute files by the customer

Fig. 2. The procedure to retrieve files by the customer

We could assign the fragmentation, storing the fragmen-
tation information, and reassembling the fragments function-
alities to a middleware (or proxy) component that resides
between the customer and service provider. However, we
decided not to do this for three main reasons: trust, cost,
and scalability. Trusting the middleware requires adding more
techniques to our model which we tend to keep as simple as
possible. The middleware also suffers from being a bottleneck,
which affects the overall performance and security. Most
customers want to use our technique to store their personal
files on set of free accounts on different service providers.
Those kinds of customers are looking for zero cost, so adding
a middleware component, which most likely will be offered
with some prices, would be inappropriate. Industry customers
on the other hand can afford the extra cost but would surely
consider our technique to reduce the cost, and to avoid any
performance deprivation.

B. Adversary Model

In the cloud file distribution systems, the general adversary
model is “curious-and-vulnerable”, which means that the cloud
servers are vulnerable to Byzantine failures and external
attacks. Byzantine failures are caused by hardware errors,
software bugs, or system misconfiguration. External attacks are
caused by natural disasters or malicious behaviors. The cloud
server may provide the storage service honestly and correctly
but it may try to figure out information from the stored data.

We consider two types of attackers: eavesdropping attackers
and DoS attackers. For eavesdropping attackers, we assume
that the adversary does not interfere with the normal function-
ing of the network but only sniff on a limited number of of
the network links. For DoS attackers, we also assume that the
adversary can block a limited number of the links or nodes to
disrupt the communication between certain service providers
and the user.

www.manaraa.com

3

III. C ODING TECHNIQUES

In our system, the customer needs to register to a couple of
cloud storage service providers. For example, we may assume
that Google Drive, Apple iCloud, Microsoft Sky drive, and
Amazon Simple Storage Service (Amazon S3). The customer
may register one or few accounts under providers. As an
example, in our experiment, we registered an account for each
of the five providers: one at Google Drive, one at Apple
iCloud, one at Microsoft Sky Drive, one at Amazon S3,
and one at Dropbox. Our goal is to achieve reliability and
privacy at the same time. In particular, if a customer uses
our application to store a data file in the cloud, we want the
following guarantees:

1) Less thank providers can get nothing of the customer
data file.

2) Customer data file could be recovered from anyk of the
n providers. In another word, if storage services within
n−k providers are not available, the customer will still
be able to recover her data files from the fragments
stored at the remaining storage service providers.

We designed two techniques for the file fragmentation and
coding. The first one is based on Rabin’s IDA scheme and the
second one is based on XOR code.

The IDA code construction in this section is a 3 out of 4
scheme and the XOR code construction is a 2 out of 6 scheme.
One can easily extend the design tok out of n schemes.
In another word, the customer could register forn different
cloud storage service providers and store her data within these
providers. The customer should be able to recover her data file
from everyk storage providers.

A. IDA based coding

As we have mentioned, though our techniques could be
easily extended to generalk out ofn schemes, we concentrate
our discussion on3 out of 4 schemes in this section. In our
system, each byte is considered as elements inGF (28) and
we use the irreducible polynomialx8+x6+x5+x4+1 over
GF (2) for the field modulo operations.

When a customer initiates the reliable cloud storage service
with our application, the application will first generate four
vectorsα1, α2, α3, α4 ∈ GF (28)3 such that every subset
of 3 different vectors are linearly independent. In our design,
this process is done only at the beginning when the customer
installs the application. In order to achieve data privacy,
vectors should be carefully chosen such that each vector will
contain at least two non-identity element fromGF (28). For
example, the following choice is not acceptable.

α1 = (00000001, 00000000, 00000000)
α2 = (00000000, 00000001, 00000000)
α3 = (00000000, 00000000, 00000001)
α4 = (00000001, 00000001, 00000001)

Now assume that the customer wants to store a fileF in
the cloud. We divide the fileF in blocksF = F1, F2, · · · , and
each block consists of3 bytes. In another word, assume that

Fi = (bi1, bi2, bi3) where bij are bytes. The fragments that
will be stored at storage provideri (i = 1, 2, 3, 4) will be:

Sj = F1α
T
j , F2α

T
j , . . .

When the customer has two or more accounts within one
storage provider, the shares for that storage provider willbe
divided into different groups and each account server will
receive one group of data for storage. The split of the data
into groups for each provider and the data group size depends
on the account quota etc.

Note that each storage provider stores data of length|F |/3
and the entire data stored at these storage is of length
(4/3) · |F |. This scheme is optimal since the data stored at
3 providers has the length of3 · |F |/3 = |F | which is the
minimal information required for the recovery of fileF .

Given the information at3 providersj1, j2, j3, let A be the
3×3 matrix (αT

j1
, αT

j2
, αT

j3
) andA−1 be the inverse ofA. Then

the original fileF could be recovered asSjA
−1.

In our application, there is no data stored at the client
machine. The meta-data that are needed for the application
to store and recover data files include

1) Four generator vectorsα1, α2, α3, α4.
2) Four decoding matrixA−1

1 , A−1
2 ,A−1

3 ,A−1
4 , whereA−1

1

is the inverse of the matrix(αT
2 , α

T
3 , α

T
4), A

−1
2 is the

inverse of the matrix(αT
1 , α

T
3 , α

T
4), etc.

These meta-data will only need to be processed and stored at
the system set up time. We encode the entire meta-data using
3-out-of-4 Shamir Secret Sharing scheme [17] and store the
four shares at the four providers respectively. Each time the
customer needs to get three shares from three providers to
recover the meta-data for file storage and retrieval. Note that
it is very inefficient to store the whole file using the Shamir
Secret Sharing scheme.

It is straightforward to see that the above schemes have
achieved our goals: (1) any two providers will not be able to
recover the the customer data file content, and (2) the customer
could recover her data from any three providers.

B. XOR based coding

As we have mentioned in the Section I, there has been
extensive interests in designing XOR based coding techniques.
For reliable storage system design, people normally prefers
systematic code. A systematic code is an error-correcting code
where the input data is embedded in the encoded output. In
another word, the parity data is simply appended to the source
block in a systematic code and the data retriever does not
need to recover the original source symbols if all of them are
received correctly. However, for our goal, trivial application
of systematic code is not preferred since we do not want any
single server learn the information of the original data file.

In previous section, we implemented a 3-out-of-4 scheme
using IDA scheme. In this section, we show an example of
a 2-out-of-n scheme withn = 7 using array BP-XOR codes
which were introduced by Wang [19], [20] recently. These
codes were based on colored edge graph models [21]. As
an example, assume that the customer has seven accounts

www.manaraa.com

4

S1, S2, S3, S4, S5, S6, S7. The data file could be recovered
from any two accounts. For a data fileF , it is split into 6
fragments of equal size (when the size ofF is not a multiple
of 6, we append empty strings at the end of the file to make
it a multiple of 6). A file could also be split into several
parts and each part is split into6 fragments. In another word,
F = v1v2v3v4v5v6 and |vi| = |F |/6 for i = 1, · · · , 6. The
fragments that each storage server will receive is shown in
Table I. Note that the original fileF can either be encrypted
or not encrypted, depending on the security requirement of
the customer. If the original file is encrypted, the customer
can encode the encryption key using the2-out-of-7 Shamir
Secret Sharing scheme [17] and store the seven shares at the
seven providers respectively. The customer may also choose
to store the encryption key in his/her local machine or other
devices, but the security of the key will be a big problem.

It is straightforward to check that the original data file could
always be recovered from any two storage providers. Note the
total size of data stored in one provider is half of the size of
the original file. This complexity is much smaller than typical
binary linear coding and other encoding techniques for storage
systems such as EVENODD.

IV. H ARDNESS ANDFORMALIZATION OF CONSTRAINED

FILE DISTRIBUTION

A. Problem Definition and Hardness

The cloud coding and distribution schemes we presented in
this paper distributes the same number of segments to every
provider. Other threshold based file storage schemes may not
use this method of distribution. Here we consider the general
problem of distributingn shares of a file intom storage
providersp1, . . . , pm, wherek (k < n) out of then shares
can retrieve the original file and less thank shares leak no
information for the original file. There is an associated cost ci
to store one share into providerpi (1 ≤ i ≤ m). There areh
authoritiesa1, . . . , ah, and every authorityai (1 ≤ i ≤ h) is
associated with a subsetPi of storage providers. Note that a
storage provider can be associated with multiple authorities.

We have the following requirement for file distribution:

• The total cost for file distribution should be no more than
budgetB (Cost Constraint).

• One should avoid to distributek or more thank shares
to providers that belong to the same authority (Security
Constraint).

We denote the problem as CFD (Constrained File Distribu-
tion).

Next we show that the problem is NP-Complete.
Theorem 4.1:CFD is NP-Complete.

Proof: We can reduce 3SAT to CFD. Given a 3SAT
instanceS with r variables andu clauses, we can construct a
CFD instanceC as follows. For every variableγi (1 ≤ i ≤ r)
and its negationγi, we create a providerp2i−1 and p2i
(1 ≤ i ≤ r). We also have an additional providerp0. In total
we have2r + 1 providers. For every clauseli (1 ≤ i ≤ u) ,
we create an authorityai that associates the three providers

that correspond to the literals in the clause. We also cre-
ater additional authoritiesau+1, au+2, . . . , au+r whereau+i

(1 ≤ i ≤ r) is associated with providersp2i−1, p2i andp0. The
unit share storage cost for providerspi (1 ≤ i ≤ 2r) is 1 and
the cost for providerp0 is 0. We also setn = r+1, k = 3, and
B = r. If S is satisfying, we can create a satisfying distribution
for C. We just distribute one share of the file to providerp2i
if variable γi is true in the satisfying assignment ofS and to
provider p2i−1 if variable γi is false in the assignment. We
also distribute one share top0. Now we can see that the total
cost for the distribution isB. We can also see that a clause is
not satisfied if and only if all the three providers correspond
to the three variables in the clause are all distributed withone
share. This means that clauseli (1 ≤ i ≤ u) is satisfied if
and only if the security constraint for authorityai is satisfied.
In addition authoritiesau+i (1 ≤ i ≤ r) have exactly two
associated providers that have distributed share. This means
the distribution scheme satisfies the constraints. One the other
hand, if there exists a satisfying distribution forC, then we
can find a satisfying assignment forS. Because the budget
bound isr, we must distribute one share top0 and the otherr
shares top1, p2, . . . , p2r. We have the following observation:

• Every providerpi (1 ≤ i ≤ 2r) can have at most one
share otherwise authorityau+i will have three shares in
its associated providers.

• Only one of the providersp2i−1 andp2i can be distributed
with one share otherwise authorityau+i will have three
shares in its associated providers.

Now we can set variableγi to be true ifp2i is distributed
with one share and setγi to be false ifp2i−1 is distributed with
one share. We also have that clauseli (1 ≤ i ≤ u) is satisfied if
and only if the security constraint for authorityai is satisfied.
This means that one can find a satisfying assignment forS if
there is a satisfying distribution forC, which completes the
proof.

B. SMT Formalization for Constrained File Distribution

We can use the following SMT formalization for file distri-
bution. SMT is a powerful tool to solve constraint satisfaction
problems arise in many diverse areas including software and
hardware verification, type inference, extended static checking,
test-case generation, scheduling, planning, graph problems,
etc. [4]. An SMT instance is a formula in first-order logic
with equalities involving uninterpreted functions [7].

Suppose we want to distributen shares tom providers, the
cost constraint for share distribution can be formalized as

∑

1≤i≤m

wici ≤ B

∑

1≤i≤m

wi ≥ n

wi ≥ 0, 1 ≤ i ≤ m

Herewi is the integer variable that denotes the number of
shares distributed to providerpi (1 ≤ i ≤ m).

www.manaraa.com

5

TABLE I
DATA SHARES EACH STORAGE SERVER WILL RECEIVE

v1 ⊕ v6 v2 v3 ⊕ v1 v4 ⊕ v2 v5 ⊕ v3 v6 ⊕ v4 v5
v2 ⊕ v5 v3 ⊕ v6 v4 v5 ⊕ v1 v6 ⊕ v2 v3 v1 ⊕ v4
v3 ⊕ v4 v4 ⊕ v5 v5 ⊕ v6 v6 v1 v1 ⊕ v2 v2 ⊕ v3

The security constraint can be formalized as
∑

aj∈Pi

wj < k, 1 ≤ i ≤ h

Note that other constraints can also be formalized conve-
niently by SMT. The formalization can also be applied (with
minor adjustment) to other threshold based coding schemes.

Note that the problem may also be solved by other heuristic
algorithms. However, when there are multiple constraints it is
usually difficult to design the algorithm that satisfies all the
constraints. Our SMT formalization can be easily extended to
incorporate various constraints.

V. SECURITY ANALYSIS, IMPLEMENTATION AND

EVALUATION

A. Security Analysis and Evaluation

For eavesdropping attackers, we define the compromising
probability Γ to be the probability that at leastk of the n
coding shares is obtained by the eavesdropper. If we assume
the probability that one share is eavesdropped isζ and the
probability to eavesdrop different shares is independent,we
have

Γ = 1−
k−1
∑

i=0

(

n
i

)

ζi(1− ζ)n−i (1)

Note that the customer can use different user names for dif-
ferent providers to store the shares of the same file. However,
the attacker can easily correlate different shares of the same
file by the IP address and timestamp of the data packets.

For DoS attackers, we define the compromising probability
Γ to be the probability that the at leastn−k+1 shares of the
n coding shares are blocked or corrupted (irretrievable) by the
attacker. If we also assume the probability that one share is
blocked or corrupted isζ and the probability to block different
shares is independent, we can have a similar equation.

Impact of k and n on Γ: Fig. 3 and Fig. 4 shows the effect
of n and k on compromising probabilityΓ. Here we define
the compromising toleranceη to bek/n. In Fig. 3, ζ = 0.2,
and in Fig. 4,ζ = 0.3.

• When η > ζ, increasingn helps the security of the
scheme (decreasingΓ). When η < ζ, increasingn has
inverse impact on the security (increasingΓ).

• Whenn increases,Γ converges to some value. Whenη >
ζ, Γ converges to 0. Whenη < ζ, Γ converges to 1. When
η = ζ, Γ converges to 1/2. The impact onΓ diminishes
quickly aftern reaches some value. This means that after
some threshold (which depends onk), increasingn has
little impact.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Compromising threshold (η)

C
om

pr
om

is
in

g
pr

ob
ab

ili
ty

n=10
n=20
n=40

Fig. 3. Impact ofη andn on Γ with ζ = 0.2

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

C
om

pr
om

is
in

g
pr

ob
ab

ili
ty

η=0.2

η=0.3

η=0.5

η=0.75

Fig. 4. Impact ofη andn on Γ with ζ = 0.3

Impact of k and n on Γ in Random Topology: In
a practical network, the probability to eavesdrop different
shares may not be independent. Even if we assume that
the probability to eavesdrop different link in the network is
uniform, the probability to eavesdrop different shares maynot
be uniform since different shares may go through overlapping
links. In this case Equation 1 cannot be used to calculate
the compromising probability. We evaluate the compromising
probability in random network through simulation. We use
BRITE [13] as the random network generator and apply the
Waxman model [13] to generate random topologies with the
two parameters of Waxman model asα = 0.2 andβ = 0.15.
The network growth type is set to be incremental. We ran-
domly generate networks with 300 nodes and the customer
and n service providers are randomly chosen from the 300
nodes. The communication path between the customer and any
service provider is chosen to be the shortest path. We assume
that the attacker will eavesdrop any link with probabilityδ.

www.manaraa.com

6

0 5 10 15 20 25 30

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

n

C
om

pr
om

is
in

g
pr

ob
ab

ili
ty

η=0.3

η=0.35

η=0.4

Fig. 5. Impact ofη andn on Γ in random topology withδ = 0.05

Fig. 5 shows the effect ofn and k on compromising
probabilityΓ in random topology withδ = 0.05. All the values
in the figure are the average of 100 runs. From this figure, we
can see that when the compromising toleranceη is 0.3, the
compromising probability increases whenn increases, which
means that increasingn has inverse impact on the security.
Whenη is increased to be 0.35, the compromising probability
decreases for largen. This means that there exists some value
of η which is the turning point between positive impact and
inverse impact.

Note that in the above figure we assume that the attacker
does not know the topology and the probability for any link
to be eavesdropped is uniform. If the attacker knows the paths
for the data file, he/she can choose those links in the paths to
eavesdrop. To find the minimum subset of links to eavesdrop
to get the required information is a minimum partial set cover
problem [18].

B. Implementation

We implemented our prototype using Microsoft Visual Stu-
dio 2010 Ultimate version and we used the C Sharp language.
The underlying operating system is Windows7 Home Premium
running on a Dell Optiplex990 Machine. The machine spec-
ifications are as follows: Intel(R) Core(TM)i5-2400 CPU @
3.10GHz and 4.00 GB of RAM. The C Sharp implementation
provides the customer with a Graphical customer Interface
allowing customers to select the file to be securely saved on the
cloud. Our tool divides the file into several segments and then
generates new segments by XORing different pairs of the orig-
inal ones. The number of segments can be left to the customer
to specify. Our implementation considers seven segments. In
the evaluation we will show how the number of segments
and the cost of storage are related. The tool then allocates
all segments among the different cloud providers. We consider
five providers: Dropbox, Google Drive, Sky Drive, Syncplicity
and University of North Carolina Charlotte (UNCC) H: drive.
UNCC H: drive gives 200MB of file storage space to every
student for data backup at the end of each semester. The other
four providers are different brands for easy file management
in the cloud to allow the customers to sync, access, share and
automatically backup files online. They all provide free edition

but with different features and specifications (e.g. Dropbox: 2
GB and Up to 18 GB, Sky Drive: 7 GB, Google Drive: 5 GB,
Syncplicity: 2 GB). Providers vary in sharing policy, file types,
application support and version control. The most important
feature for the providers are safety, security and performance.
We excluded the price since we are using the free versions
of those providers. We installed and configured the client
softwares provided by those companies. Those client softwares
allow customers to deal with a local drive. A customer can just
drag and drop the files into the client softwares and they will
be synchronized automatically to the cloud. For the recovery,
given that we have five providers and with the toleration of
three providers’ failures, the tool can retrieve any file in ten
different ways. The tool allows the customer to choose any
two providers to retrieve the file.

C. Overhead Evaluation

We conducted an experimental evaluation to demonstrate the
feasibility and performance of our approach. The evaluation
study consists of three main domains: segmentation, recovery
and storage cost. In the segmentation, we evaluated our scheme
implementation on different file types and sizes. For the
recovery, we compared the performance of the ten recovery
options (pairs of providers). In the storage cost, we study the
relation between the number of segments, number of providers
and the extra space required to save the XORed segments.

Evaluating the Segmentation ProcessThe segmentation
process includes reading the file, partitioning it into certain
number of segments (specified by the customer) and then
placing the overall segments among the providers. The seg-
mentation process may require padding empty bytes at the
end of the last segment. Depending on the size of the file
(denoted asS) and the number of segments (denoted asN),
one can calculate the number of padded bytes (denoted asA).
Distributing the file segments (original, XORed, padded) over
providers is done based on the 2 of 5 array BP-XOR codes
described in [19], [20].

To evaluate the segmentation complexity in terms of pro-
cessing overhead, we tested it on Winrar files with different
sizes. We run the program on every file ten times to get the
average results. Fig. 6 shows the processing overhead for these
files. From the figure we can see that the processing overhead
(measured in milliseconds) increases linearly with the filesize.

Evaluating the Retrieving ProcessThe recovery evaluation
shows the time to retrieve the original file from any two
pairs of providers. A customer who chooses to securely save
her files on the five providers will have ten different ways
to retrieve the file. In Fig. 7, we measure the time needed
to recover a file using all possible combination. We draw
the results for every server. The results show that the four
providers (Google, Dropbox, Syncplicity, Sky Drive) achieve
very close retrieving times, but the UNCC drive shows the
worst performance, even we are reading and writing in local
drives. This is because that the file retrieval process is managed
by different client software provided by each provider, which
may affect the response time and the overall recovery time.

www.manaraa.com

7

36 MB 66 MB 88 MB 138 MB

3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500
12000
12500
13000

Processing Time (WINRAR)

M
ili

S
ec

on
ds

File Size

Fig. 6. Processing time for the Winrar file

Google Drop Sky Syn UNCC

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210

Recovery

M
ill

is
ec

on
ds

Server

Google
Drop
Sky
Sync
UNCC

Fig. 7. Time to recover a file

Another factor might be that the segments that are distributed
to each server play a factor in reported recovery time. Whereas
the schemes we implemented in this paper distribute the same
number of segments to every provider, other schemes may not.
In this case, distributing a small number of shares (segments)
to those slow providers is a good practice.

Evaluating the Storage CostWe also evaluated the storage
cost of the XOR based scheme with different scenarios. Those
schemes are different in the number of providers and the
number of failures to tolerate. For the purpose of evaluation,
we choose two scenarios: (1) four providers and two failures
(2 out of 4 scheme), (2) five providers and three failures (2
out of 5 scheme). The coding for these scenarios are the array
BP-XOR codes described in [19], [20]. Fig. 8 shows the cost
of storage (the number of duplicates in terms of the original
segments) for oddN and Fig. 9 shows the cost for evenN .
These figures show that the number of extra space can be
double of the number of original segments in most cases or
triple in the worst cases.

Five Seven Nine Eleven

12

16

20

24

28

Space Cost

To
ta

l

#Segments

4 Servers
5 Servers

Fig. 8. Cost of storage for odd number of segments

Six Eight Ten Twelve

12

16

20

24

28

32

Space Cost

To
ta

l

#Segments

4 Servers
5 Servers

Fig. 9. Cost of storage for even number of segments

Evaluating the Share Distribution Fig. 10 shows the
SMT solving time for the share distribution formalization.
The formalization is solved by the Yices SMT solver [1]. We
assume that there are 15 providers and 5 authority domains.
Every provider has a probability of 1/3 to be associated with
an arbitrary authority domain. The file encoding contains 30
shares and at least 10 shares are required to recover the file.
The cost to store a share in a provider is a random number
between 1 and 3. We use the formalization in Section IV
to find the satisfying distribution scheme. From Fig. 10 we
can see that the solving time decreases when the cost upper
bound increases, and remains stable after certain point. This
is because the number of satisfying solutions increases rapidly
when the upper bound increases. When the upper bound
reaches some threshold, it has no effect on SMT solving time
anymore.

VI. RELATED WORKS

MDS codes such as Reed-Solomon code [16] are widely
used in many applications though it is not efficient both in

www.manaraa.com

8

35 40 45 50 55
1

2

3

4

5

6

7

Upper bound of total cost

S
M

T
 s

ol
vi

ng
 ti

m
e

(m
ill

is
ec

on
ds

)

Fig. 10. SMT solving time for the share distribution formalization

coding and decoding process for cloud storage. LT codes [12]
proposed by Luby is the first rateless erasure codes that are
very efficient as the data length grows.

The OceanStore [11] is a utility infrastructure designed to
span the globe and provide continuous access to persistent
information, where data is protected through redundancy and
cryptographic techniques. B. Bindu et al. present an effectual
and adaptable cloud data storage scheme in [3]. The scheme
achieves the data storage correctness, allows the authenticated
customer to access the data and data error localization, i.e.,
the identification of misbehaving servers. In [2], Abu-Libdeh
et al. introduces RACS, a proxy that transparently spreads
the storage load over many providers using RAID. However,
the proxy may become the bottleneck of the system and
the clients may not have the full trust over the proxy. The
work in [6] presents a secure LT codes-based cloud storage
service scheme. The scheme has comparable storage and
communication cost, but much less computational cost during
data retrieval than erasure codes-based storage solutions. It
also introduces less storage cost, much faster data retrieval,
and comparable communication cost comparing to network
coding-based distributed storage systems. However, the paper
does not provide a coding scheme with general parameters, and
the validity of the generated code is verified in a brute-force
way, which is not scalable when the parameters are large.

VII. C ONCLUSION

In this paper we present a novel framework of secure cloud
data storage from the customer perspective. In our framework,
the customer encode the data with an efficient coding method
and send one share of the encoded data to each of then service
providers. The original data can be retrieved from at leasek
(k < n) shares. Less thank shares of data can retrieve nothing
of the original data. The customer only needs the encoding
and decoding program. The correctness and efficiency of the
scheme are verified by comprehensive evaluation. We also
show that the problem to find the satisfying file distribution
under certain cost and security constraints are NP-hard, and

present the (SMT) formalization to find the satisfying data
share distribution with cost and security constraints.

REFERENCES

[1] Yices: An SMT solver. http://yices.csl.sri.com. Online, Accessed
November-11-2011.

[2] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon.
Racs: a case for cloud storage diversity. InSoCC, pages 229–240. ACM,
July 2010.

[3] B. Shwetha Bindu and B. Yadaiah. Secure data storage in cloud
computing. International Journal of Research in Computer Science,
1:63–72, 2011.

[4] N. Bjørner and L. de Moura.z310 : Applications, enablers, challenges
and directions. InCFV ’09 Sixth International Workshop on Constraints
in Formal Verification, 2009.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient
scheme for tolerating double disk failures in raid architectures. IEEE
Trans. Computers, 44(2):192–202, 1995.

[6] Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou, and Y. Thomas
Hou. Lt codes-based secure and reliable cloud storage service. In
INFOCOM’12, pages 693–701, 2012.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory.J. ACM, 7:201–215, July 1960.

[8] A. Dimakis, P. Godfrey, Y. Wu, M.. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems.IEEE Trans. Inf. Theor.,
56(9):4539–4551, 2010.

[9] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network
codes for distributed storage.CoRR, abs/1004.4438, 2010.

[10] C. Huang and L. Xu. STAR: an efficient coding scheme for correcting
triple storage node failures. InFAST, pages 197–210, 2005.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An
architecture for global-scale persistent storage. InProceedings of the
Ninth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2000),, pages 190–
201, 2000.

[12] M. Luby. Lt codes. InProceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science, pages 271–280. IEEE, 2002.

[13] Alberto Medina, Ibrahim Matta, and John Byers. Brite: Aflexible
generator of internet topologies. Technical report, Boston, MA, USA,
2000.

[14] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for
redundant arrays of inexpensive disks (raid). InProceedings of the
1988 ACM SIGMOD international conference on Management of data,
SIGMOD ’88, pages 109–116, New York, NY, USA, 1988. ACM.

[15] Michael O. Rabin. Efficient dispersal of information forsecurity, load
balancing, and fault tolerance.J. ACM, 36(2):335–348, April 1989.

[16] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, June 1960.

[17] Adi Shamir. How to share a secret.Commun. ACM, 22(11):612–613,
November 1979.

[18] Vijay V. Vazirani. approximation algorithms. Springer, 2004.
[19] Yongge Wang. Efficient LDPC code based secret sharing schemes and

private data storage in cloud without encryption. Technical report, UNC
Charlotte, 2012.

[20] Yongge Wang. LT codes for efficient and reliable distributed storage
systems revisited. Technical report, UNC Charlotte,submitted for
publication, 2012.

[21] Yongge Wang and Yvo Desmedt. Edge-colored graphs with applications
to homogeneous faults.Inf. Process. Lett., 111(13):634–641, July 2011.

